再来是响应时间上的参数说明:
由于液晶分子的转动,LCD屏幕上每个sub-pixel由前一桢色亮度过渡到后一桢色的亮度,会有一个时间过程,也就是我们通常所说的响应时间。因为每一个像素点不同灰阶之间(即亮度之间)的转换过程,是长短不一、非常复杂的,很难用一个客观的尺度来进行表示。因此,业内现有关于液晶响应时间的定义,试图以液晶分子由全黑到全白之间的转换速度作为面板整体响应时间的缩影,来代表液晶面板的快慢程度,通常又可称之为“On/Off”响应时间。由于液晶分子由黑到白和由白到黑的转换速度并不是完全一致的,为了能够尽量有意义的标示出液晶面板的反应速度,现又针对响应时间的定义,基本以“黑→白→黑”(亮-->暗-->亮)全程响应时间为标准。
事实上,液晶分子转换速度及扭转角度由施加电压的大小来决定。从全黑到全白液晶分子面临最大的扭转角度,需施以较大的电压,此时液晶分子扭转速度较快;而介于全黑、全白间的较小幅度灰阶变化,需施加较小电压来进行准确而精细的角度控制,因此液晶分子扭转速度反而要慢一些。通常来讲,液晶面板黑白间的响应时间最快,而其它灰阶之间也是构成绝大多数不同色彩变化的响应时间,要比黑白间的响应时间慢得多。这样看来,传统的On/Off用黑白转换时间来表示LCD响应时间,以偏概全,无法精确地表示LCD面板的整体响应时间。
另外,在操作系统中,响应时间指用户发出请求或者指令到系统做出反应(响应)的时间。
所谓反应时间是液晶显示器各像素点对输入信号反应的速度,即像素由暗转亮或由亮转暗所需要的时间(其原理是在液晶分子内施加电压,使液晶分子扭转与回复)。常说的25ms、16ms就是指的这个反应时间,反应时间越短则使用者在看动态画面时越不会有尾影拖曳的感觉。一般将反应时间分为两个部分:上升时间(Rise time)和下降时间(Fall time),而表示时以两者之和为准。
CRT显示器中,只要电子束击打荧光粉立刻就能发光,而辉光残留时间极短,因此传统CRT显示器反应时间仅为1~3ms。所以,反应时间在CRT显示器中一般不会被人们提及。而由于液晶显示器是利用液晶分子扭转控制光的通断,而液晶分子的扭转需要一个过程,所以液晶显示器的反应时间要明显长于CRT。
从早期的25ms到大家熟知的16ms再到最近刚刚出现的12ms,反应时间被不断缩短,液晶显示器不适合娱乐的陈旧观念正在受到巨大挑战。可以先做一个简单的换算:30毫秒=1/0.030=每秒钟显示33帧画面;25毫秒=1/0.025=每秒钟显示40帧画面;16毫秒=1/0.016=每秒钟显示63帧画面;12毫秒=1/0.012=每秒钟显示83帧画面。可以看出12ms的诞生意味着液晶制造的一个巨大进步。
但要注意的是,液晶显示器都有一个扫描频率的限制,特别是对于场频(又称刷新率),很多都限制在75Hz以下,而就一般概念而言,75Hz意味着一秒刷新75帧画面,这样看上去就达不到12ms对应的每秒83帧画面了。
实际上,我们上面所说的12ms反应时间是针对全黑和全白画面之间切换所需要的时间,这种全白全黑画面的切换所需的驱动电压是比较高的,所以切换速度比较快,可以达到12ms;而实际应用中大多数都是灰阶画面的切换(其实质是液晶不完全扭转,不完全透光),所需的驱动电压比较低,故切换速度相对较慢。所以综合起来,在灰阶画面下75Hz的刷新率已经可以满足12ms液晶面板的需求了。
据数据表明:
反应时间30毫秒=1/0.030=每秒钟显示器能够显示33帧画面,这是已经能满足DVD播放的需要;
反应时间25毫秒=1/0.025=每秒钟显示器能够显示40帧画面,完全满足DVD播放以及大部分游戏的需要;
而玩那种激烈的动作游戏(如QUAKEIII/UT2003/DOMMIII)、极速追逐赛等游戏要达到毫无拖影的话,所需要的画面显示速度都要在每秒60帧以上,即需要的反应时间=1/每秒钟显示器能够显示60帧画面=16.6毫秒。
上一页[1][2]
上一页 1 2下一页