手机游戏巴士

MIT的机器人会玩叠叠乐了!手残的你怕不怕?

发表于:2024-11-15 作者:游戏编辑
编辑最后更新 2024年11月15日,选自MITNews作者:JenniferChu机器之心编译参与:路雪、张倩叠叠乐是一项对动作的灵巧程度以及游戏策略都要求很高的任务,人类尚且需要小心翼翼,手...


选自MIT News


作者:Jennifer Chu


机器之心编译


参与:路雪、张倩


叠叠乐是一项对动作的灵巧程度以及游戏策略都要求很高的任务,人类尚且需要小心翼翼,手残党基本就告别这个游戏了(没错,就是小编本人)。近日,MIT 在《Science Robotics》杂志上发表文章,展示了一个会玩叠叠乐的机器人。

在麻省理工学院 3 号楼的地下室里,一个机器人正在仔细地考虑下一步行动。它轻轻地戳著叠叠乐的木块,想要在不弄塌积木塔的情况下找到最容易抽出的一个。这是一个孤独、缓慢但又异常敏捷的游戏。

这个机器人是由 MIT 的工程师开发的,配备了一个软齿状夹持器、一个力感应腕带和一个外部摄像头,所有这些都是用来观察并感应积木塔以及单个积木块的。

在机器人小心翼翼地戳木块时,一台计算机利用摄像头和腕带接收视觉和触觉反馈,并将这些测量值与机器人之前的动作进行比较。它还考虑了那些动作的结果,具体来说,即一块积木在特定配置下及受到一个特定的力推动时能否被成功抽出。该机器人能实时“学习”是继续推动木块还是转向新的目标,以防积木塔倒塌。

该机器人的相关细节近日发表在《Science Robotics》杂志上。MIT 机械工程系助理教授 Alberto Rodriguez 表示,这个机器人展示了一些之前的机器人系统无法做到的事:快速学习开展任务的最佳方式,它利用的不只是当今研究充分使用的视觉线索,还有触觉和物理交互。

“与国际象棋、围棋等纯感知任务不同,玩叠叠乐还需要掌握物理技巧,如戳、推、拉、放及对齐木块等。这项游戏需要互动式感知和操作,你必须去触碰积木塔才能学会何时以及如何移动积木块。”Rodriguez 表示。“这项任务难以模拟,因此机器人必须在现实世界中通过与真实的叠叠乐积木塔进行交互才能学习。主要的困难在于利用物体、物理等相关常识从相对较少的实验中进行学习。”

他表示,除了玩叠叠乐之外,研究人员开发的触觉学习系统还可用于其他应用,尤其是那些需要谨慎的物理交互的任务,包括从垃圾填埋场中分离可回收物品和组装消费品。

“在手机装配线上,几乎每一步,咬合或拧螺丝的感觉都来自于力和接触,而不是视觉。”Rodriguez 说道,“学习执行这些动作的模型是这种技术的用武之地。”

论文一作 Nima Fazeli 是 MIT 的一名研究生。团队成员还包括 Miquel Oller、Jiajun Wu、Zheng Wu 和 MIT 脑与认知科学系教授 Joshua Tenenbaum。



论文链接:http://robotics.sciencemag.org/content/robotics/4/26/eaav3123.full.pdf

摘要:

人类能够无缝结合触觉刺激、视觉刺激和直观经验,去探索和执行复杂的控制技能。他们不仅能够看到自己的动作,还能感觉到。目前的大部分机器人学习方法利用计算机视觉和深度学习的近期发展成果,获取所需数据量庞大的像素-动作策略。这些方法未利用物理学中的直观潜在结构或触觉特征。触觉推理在动物世界中无处不在,但在机器人控制中仍然未得到充分研究。触觉刺激只能通过侵入式交互来获取,对具备视觉刺激的数据流进行解释也很有难度。本研究提出一种方法,在机器人中模拟层次推理(hierarchical reasoning)和多感官融合,使其学会玩叠叠乐,一种需要物理交互才能玩好的复杂游戏。该游戏机制被制定为使用时间分层贝叶斯模型的生成过程,其具备行为原型和带噪积木状态的表征。该模型捕捉描述性潜在结构,机器人通过简短的探索阶段在力量和视觉领域中学习这些关系的概率模型。学会之后,机器人使用该表征推断玩游戏时的积木行为模式和状态。然后机器人基于推断,调整自己的当前动作和游戏策略,这种玩游戏的方式与人类类似。我们对比评估了该方法和三种标准基线方法,证明该方法在现实世界的叠叠乐游戏实现中具备有效性。 

原文链接:http://news.mit.edu/2019/robot-jenga-0130

本文为机器之心编译,

转载请联系本公众号获得授权



?------------------------------------------------


加入机器之心(全职记者 / 实习生):hr@jiqizhixin.com


投稿或寻求报道:

content

@jiqizhixin.com


广告 & 商务合作:bd@jiqizhixin.com




0